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An Insight Into the Importance of
Wrist Torque in Driving the Golfball:
A Simulation Study

Eric J. Sprigings and Robert J. Neal

The purpose of this study was to examine whether, in theory, the clubhead speed at
impact could be increased by an optimally timed wrist torque, without jeopardizing
the desired club position at impact. A 2-D, three-segment model comprising torso, left
arm, and golfclub was used to model the downward phase of the golf swing. Torque
generators that adhered to the activation and force-velocity properties of muscle were
inserted at the proximal end of each segment. Separate simulations were performed.
with the wrist joint generator enabled then disabled. The results from these simula-
tions showed that significant gains in clubhead speed (=9 %) could be achieved if an
active wrist torque was applied to the club during the latter stages of the downswing.
For a swing that produced a clubhead speed of 44 m/s (=99 mph), the optimal timing
for the activation of wrist torque occurred when the arm segment was approximately
30° below a horizontal line through the shoulder joint. The optimal activation time for
the joint generators was very much dependant on the shape of the torque profiles. The
optimization process confirmed that maximum clubhead speed was achieved when
the torque generators commenced in sequential order from proximal to distal.
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Introduction

The speed of the clubhead at impact is the principal factor that determines the distance
that a golfball will travel. Clubhead speed is known to be a function of the sequential
segment velocities of the chain link that makes up the golf swing (Herring & Chapman,
1992). The wrist joint, being the most distal anatomical joint in this chain, would be ex-
pected to play a role in the development of the final clubhead speed. Over the years,
golfers have debated whether the action of the wrists should be passive or active in the
releasing of the clubhead prior to impact. Most golfers have an intuitive belief that the
addition of a properly timed muscular torque at the wrist joint will increase clubhead
speed at impact. However, a number of pundits, including the legendary Bobby Jones,
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believe the opposite is truc. Jones (1966) stated that during the swing the club “free-
wheeled” through the ball. Williams (1967), who worked from a stroboscopic photograph
of Bobby Jones swing, likewise concluded that the uncocking torque applied by the hands
was negligible. Jorgensen (1994), using a computer simulation of a two segment planar
model of the golf swing, provided insight into this freewheeling theory of the golf swing.
His simulation work revealed, paradoxically, that anything the golfer does with his wrists
during the downswing to decrease the wrist-cock angle results in less clubhead speed at
impact than if the golfer allows the wrist joint to open naturally. While Jorgensen (1994)
reported that the early onset of muscular wrist torque during the downswing was ill ad-
vised. his simulation work revealed that clubhead speed might be increased marginally
(0.7%) if the torque was delayed until 0.07 s prior to impact. However, he cautioned that
the effectiveness of this delayed wrist torque was very sensitive to its duration time; longer
or shorter duration times produced clubhead speeds less than maximal.

The simulation work by Jorgensen, while very instructive, was based on a two-
segment golf swing system, comprising an arm and a club segment, with torque genera-
tors inserted at the wrist and shoulder joints. The shoulder and wrist torque generators in
his model, when activated, were constant in magnitude, with no allowance made for the
force-velocity or activation properties of muscle. These modeling limitations suggest that
the potential role of wrist torque in the golf swing may still not be fully understood. The
purpose of this paper was to re-examine the question as to whether, in theory, a properly
timed wrist torque during the downswing can significantly improve clubhead speed with-
out jeopardizing the desired club position at impact.

Methods

The golfer was modeled as a three-segment, two dimensional (2-D), linked system with the
golfclub, arm, and torso segments moving in a plane tilted 60° to the ground (Figure 1). The
assumption of planar movement of these segments during the downward swing is well
supported in golf literature (Cochran & Stobbs, 1968; Jorgensen, 1994). The golfclub was
modeled as a rigid segment which is consistent with the conclusion of Milne and Davis
(1992) that, contrary to popular belief, shaft bending flexibility plays only a minor dynamic
role in the golf swing. For the purposes of the 2-D representation, the torso was collapsed
along its longitudinal axis so that it lay in the movement plane as a rigid rod with a length
equal to the distance from the sternal notch of the sternum to the glenoid fossa of the
scapula. Torque generators were inserted at the proximal end of each segment and provided
the model with the capability of adding energy to the system. The torque generators used in
the simulation were programmed to be constrained by the activation rate and force-velocity
properties of human muscle. The force-length property of muscle was expected to play a
second-order role in the outcome of the performance (Caldwell, 1995) and, as such, was
not included in the simulation model. The activation rate and force-velocity properties as-
sociated with human muscle were implemented using the calculated instantaneous isomet-
ric torque predicted from a linearized Hill model structure (Niku & Henderson, 1985;
Sprigings, 1986) as input to the force-velocity approach described by Alexander (1990).
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In equation 1, T is the instantancous value produced by a torque generator; T, is the
maximum isometric torque of the torque generator; w_ is the maximum angular velocity
of the associated joint: o is the instantaneous joint angular velocity: I' is a shape factor
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controlling the curvature of the torque/velocity relationship; t is the elapsed time from
initial torque activation; and 7 is the activation time constant (Sprigings, 1986; Pandy, Zajac,
Sim, & Levine, 1990). For the present study, T, was set at 180, 120, 60 Nm for the spine,
shoulder, and wrist, respectively (Neal, Burko, Spngmgs & Landeo, 1999); @ was set at
20, 30, 60 rad - s for the spine, shoulder, and wrist, respectively (Neal et al., 1999) T was
set at 40 ms (Sprigings, 1986); and T" was assigned a value of 3.0 (Alexander, 1990).

|
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Figure 1 — Three-segment model comprising torso, left arm, and club, positioned at the top of
the backswing.

Passive protective linear-elastic torque elements were installed at each joint and
were only activated if the anatomical limits of a particular joint were in danger of being
exceeded during the simulation. Parameter values for segment length, moment of inertia,
and mass for a representative golfer with a body mass of 80 kg and a standing height of
1.83 m were calculated using the values of de Leva (1996). Parameter values for a stan-
dard driver, 43.5 in. in length, were taken from the work of Cochran and Stobbs (1968).

The equations of motion for the three-segment system were written using a Newtonian
formulation in combination with the known equations of constraint for a system linked
with pin joints (Sprigings, Lanovaz, Watson, & Russell, 1998). The torso segment was
treated as a special case in that gravitational force was prevented from supplying rota-
tional motion to the segment. We reasoned that during the golf swing, the torso segment
rotates about the spine, and since the spine is a line of symmetry for this segment, gravita-
tional torque cannot assist rotation about this axis. The value used for the moment of
inertia of the model’s torso segment about its proximal end was that of the anatomical
torso’s moment of inertia about its longitudinal axis. A fifth-order Runge-Kutta-Fehlberg
algorithm (Burden, Faires, & Reynolds, 1981) with variable step size was programmed
and used to drive the simulation model.

The simulation process commenced with the assumption that the golfer had just
completed his back swing and was just about to commence his down swing. Tt was assumed
that at time zero the golfer’s torso segment was rotated 90° clockwise (top view) from the
address position, with the arm and club segments positioned 60° and 10°, respectively,
above a horizontal line through their proximal end, which is a typical configuration for an
elite golfer (Yun, 1996; Figure 1). The acute 70° of wrist-cock angle that corresponds to
this starting configuration takes into account the club’s inertial effects that are observed for
areal player during the dynamic transition from the backward to forward swing.
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The optimization scheme employed a single activation muscular control sirategy
where the onset of voluntary torque at each joint was controlled separately. The time of
onset, as well as the length of time that the joint torques acted, provided six control vari-
ables for the optimization. The optimization search engine was based on Powell’s algo-
rithm (Press, Teukolsky, Vetterling, & Flannery, 1992). The objective function was
composed of the clubhead speed at impact, along with penalty variables that reflected
inappropriate behavior by the model during the simulated golf swing. For example the
position of the club’s shaft at impact was constrained using a penalty variable to be within
+0.5° of the vertical position. This impact position constraint is consistent with the obser-
vation made by internationally acclaimed professional golf instructor, Jim McLean, that
the greatest drivers of the modern era (Nicklaus, Norman, Hogan, Nelson, Snead, Price,
Woods, Lietzke, Peete, Sutton) when viewed face on, all had their clubshaft vertical at
impact (McLean, 1999). In the optimization scheme, the clubhead speed was expressed as
a negative valued penalty variable so that its minimization in the optimization scheme
would actually reflect a maximum. The sum of the accrued penalty variables served as the
objective function, which was minimized by varying the values of the six control param-
eters that regulated the onset and duration of the muscular torque activation strategy.

The simulation sequence was terminated when the clubhead reached a position 20
cm horizontally past the proximal end of the torso segment, or if the simulation time
exceeded 0.9 s. Although a small time-step interval of .002 s was used during the simula-
tion runs, the exact time of impact was determined by means of interpolation. To reduce
the chance of arriving at a local instead of a global minimum during the optimization
process, 200 randomly generated starting conditions for each of the six control variables
were examined for each optimization trial. The set of “best” starting conditions, as deter-
mined by the magnitude of the penalty summation that accrued during each simulation,
was then used as the starting conditions for the POWELL optimization process. At the
termination of the POWELL optimization process, the optimized set of control variables
was stored in memory. This entire procedure was repeated 50 times, with the “best” set of
optimized control variables being saved as a permanent file. The magnitudes of all torque
generators were set to zero until activated by the optimization process.

Three simulation conditions for the downward phase of the golf swing were opti-
mized. The first simulation condition (SIM-1) provided for the presence of voluntary wrist
torque during the optimization search for maximum clubhead speed at impact. The second
condition (SIM-2) prevented any voluntary wrist torque being used during the optimiza-
tion process, which effectively reduced the wrist to a free hinge during the downward
swing. A third simulation (SIM-3) was performed where the force-velocity property of
muscle was not included in the joint torque generators. The purpose of this third simula-
tion condition was to examine the effect that not including force-velocity property might
have on the segment timing reported by earlier simulation studies.

A qualitative validation test was performed on the simulation results by comparing
the corresponding image sequences for the three-segment model with a real-life photo-
graphic sequence of an elite professional golfer during his downswing.

Results

For the first simulation condition (SIM-1), which permitted a voluntary wrist torque to be
present if it improved clubhead speed at impact, the maximum horizontal clubhead speed
at impact was 44.0 m/s (=99 mph; Figure 2). The onset of voluntary muscular torque at
the joints (Figure 3) demonstrated a proximal to distal pattern, with the torso segment’s



360 Sprigings and Neal

torque generator being turned on immediately, followed by the shoulder torque for the
arm segment (.148 s later, followed finally by the torque at the wrist joint 0.138 s after
that. The total time of the downward swing to impact was 0.380 s, which is comparable to
a value of 0.34 s measured from video for professional golfer, Nick Faldo, whose club
speed at impact was approximately S m/s faster. For the SIM-1 simulation condition, re-
moving the constraint that forced the clubshaft to be in the vertical position at impact
produced a slight improvement in clubhead speed (=2%) but at the expense of good clubface

alignment at impact.
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Figure 2— Velocity of the clubhead throughout the downswing under two conditions: (a) wrist
torque generator enabled; and (b) wrist torque generator disabled.
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Figure 3 — Profiles of the joint torque histories when the wrist torque generator was enabled
(SIM-1). The clubhead reaches a speed of 44.0 m/s (=99 mph).
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Under virtually static conditions at the initiation of the downswing, the muscular
torque generated by the torso reached a value of approximately 75 Nm before decreasing
as a result of the force-velocity properties of the torque generator as the torso picked up
rotational speed (Figure 3). A similar pattern was observed for the early phase of the
torque generator at the shoulder, where it reached a value of 83 Nm before momentarily
decreasing as a result of the force-velocity properties of the generator that were attenuated
by the arm’s increasing angular velocity relative to the torso. As impact neared, the mus-
cular torques generated by both the torso and shoulder increased again as a result of the
torque generator at the wrist joint being activated. The reason for this behavior was that
the activation of the wrist torque generator increased the angular velocity of the club seg-
ment, which in turn decreased the angular velocities of the arm and torso segments. This
reduction of the relative angular velocities of the torso and arm segments, via segment
interactions, enabled the output of their torque generators to increase as impact neared.
The final brief reduction in torque output at the shoulder joint is attributed to a brief in-
crease in the arm’s relative angular velocity that coincides with a slight decrease in angu-
lar velocity of the wrist joint just before impact.

The optimized simulation, SIM-1 (Figure 4A), revealed that the active wrist torque
commenced shortly after the natural uncocking of the wrist joint had begun. Thus the wrist
torque was not responsible for initiating the uncocking of the wrist joint but was employed
to augment the naturally occurring wrist action induced by the centrifugal pull of the club.
This active uncocking of the wrist joint using muscular torque was delayed until the arm
segment was approximately 30° below a horizontal line through the shoulder joint.

Figure 4 — A. Sequential pattern of the simulated golf swing under the conditions of SIM-1.
Position “¢” corresponds to the start of the uncocking of the wrist as a result of the centrifugal
pull on the club. Position “d” corresponds to the start of active muscular wrist torque being
generated during the swing. B. Sequential pattern of the real life swing of professional golfer,
Nick Faldo. C. Sequential pattern of the simulated golf swing under the conditions of SIM-2.
Position “c” corresponds to the start of the uncocking of the wrist as a result of the centrifugal
pull on the club.

The sensitivity of the simulation to the timing of the wrist torque was examined by
advancing and delaying the onset of wrist torque by 50 ms from that found to be optimal.
The results revealed that activating wrist torque 50 ms late reduced the clubhead speed at
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impact by 4.6%, as compared to a reduction of 2.0% when the wrist torque was activated
50 ms early.

A visual comparison between the image sequence of SIM-1 (Figure 4A) and that of
a real life elite professional golfer, Nick Faldo (Figure 4B), revealed a marked similarity
in the starting and end positions. The only apparent difference between the two sequences
appears in the greater delay of the wrist uncocking during the downswing for the elite
golfer. This can be attributed to the greater rotational speed of the torso exhibited by the
professional golfer as he completed the downward swing in less time.

The second simulation condition (SIM-2) successfully showed that it is possible to
reach the desired impact position with the clubshaft vertical without using muscular wrist
torque during the downward swing (Figure 4C). The maximum horizontal clubhead speed
reached in SIM-2 was 40.4 m/s (=91 mph; Figure 2), which is approximately 3.6 m/s (=8
mph) slower than that achieved using SIM-1, where wrist torque was permitted. As in
SIM-1, the onset of the voluntary muscular torque for the torso and the arm segments in
SIM-2 was proximal to distal in nature, with the arm’s shoulder torque generator being
activated 0.080 s after the onset of the torso’s torque (Figure 5). With the absence of
voluntary wrist torque, the time of the downward swing (0.344 s) was slightly shorter by
0.036 s than it was when wrist torque was employed. This difference was somewhat sur-
prising considering that the final velocity reached by the clubhead was significantly greater
when wrist torque was applied. The explanation for this finding can be traced to the in-
creased angular displacement of the torso segment observed in SIM-1. By increasing the
angular displacement of the trunk, the arm’s rotation relative to the trunk was delayed
which, in turn, delayed the uncocking of the wrist (Figure 6). The net result was a higher
speed of the clubhead at impact for SIM-1 compared to SIM-2, but developed over a
longer time period as a result of the greater use of torso rotation.
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Figure 5 — Profiles of the joint torque histories when the wrist torque generator was disabled
(SIM-2). The clubhead reaches a speed of 40.4 m/s (=91 mph).



Wrist Torque in Driving a Golfball 363

4.
= = trunk (wrist forque applied)

= = shoulder joint (wrist torque applied)
5| =wrist joint (wrist torque applied)
--=-trunk (no wrist torque)

------ shoulder joint (no wrist torque)
—— wrist joint (no wrist torque)

2

angular displacement (rad.)

0.4

time (s)

Figure 6 — Angular displacements of the joints of the three segments under two conditions: (a)
wrist torque generator enabled; and (b) wrist torque generator disabled.

The results of the third simulation condition (SIM-3), in which the force-velocity prop-
erty of muscle was removed from the torque generators, revealed that a significantly higher
clubhead speed (=57 m/s, or 128 mph) could be reached at impact, in a shorter period of time
(0.248 s), even while constrained by the same upper torque limits that were imposed on SIM-
1. However, the asymptotic shape of the associated muscular torque profiles (Figure 7) are
unrealistic when compared to the shape of the muscular torque profiles for real golfers that
were determined by means of inverse dynamics (Neal et al., 1999). Removing the force-
velocity constraint from the simulation model had the effect of activating the wrist torque later
in the simulation. Specifically, for SIM-3, the simulated muscular wrist torque was activated
when the arm was approximately 60° below a horizontal line projected through the shoulder
joint, as compared to 30° when the force-velocity property was incorporated into the model.
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Figure 7 — Profiles of the torques produced by the joint generators when the force-velocity
property of muscle was not incorporated into the model. The clubhead reaches a speed of 57 m/
5 (128 mph).
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Discussion

Every model is an approximation to the truth, with many variables being neglected that are
Jjudged or calculated to be of minor importance to the conclusions reached (Hubbard &
Trinkle, 1984). The necessary level of complexity that one builds into a simulation model
depends on the question under study. Alexander (1990, 1992) and Hubbard (1993) caution
against the use of complex mathematical models whose results become impossible to in-
terpret because of the large number of inextricably intertwined independent variables. From
the general agreement of the results with those of a recognized elite professional golfer, it
appears that a simple 2-D, three-segment model, using a single activation control strategy
with specialized torque generators at the proximal ends, has sufficient modeling detail to
predict the optimal timing necessary to achieve maximum clubhead speed at impact.

In recent years there has been conjecture (Jorgensen, 1994) as to whether a good
golfer should actively uncock his wrists during the later stages of the golf swing, or whether
the release of the clubhead should be allowed to occur naturally as a consequence of the
centrifugal pull of the clubhead itself on the arm segment. From our simulation results it is
clearly evident that significant gains in clubhead speed (=9%) can be achieved if muscular
wrist torque is employed during the later stages of the downward swing just prior to impact.
Optimizing the timing of the torque generators used in the model required the use of a
proximal to distal muscular activation pattern if maximal clubhead speed was to be achieved.
The simulation results also supported the observation made by Jorgensen (1994) that any
active muscular wrist torque must be delayed by the golfer until his/her arms are approxi-
mately 30° below a horizontal line through the shoulder joint. Any earlier activation of the
muscular wrist forque resulted in a reduction in clubhead speed. Likewise, activation of the
torque generators in an order different from proximal to distal resulted in a less than opti-
mal performance as measured by clubhead speed. In fact, a simulation in which the joint
torque generators were forced to turn on simultaneously at the start of the downswing
produced a clubhead speed of only 30.5 m/s (=68 mph). This value equates to an approxi-
mate 30% reduction in clubhead speed from that produced when the timing was optimal.

The SIM-2 simulation condition clearly showed that it is possible to reach the de-
sired impact position with the golfclub without using muscular wrist torque during the
downward swing. This result lends support to the contention of such notable golfers as
Bobby Jones who felt that during the swing, the club “freewheeled” through the ball (Jones,
1966). However, the simulation results for SIM-1 clearly show that the use of an optimally
timed muscular wrist torque during the final phase of the downswing can produce gains of
up to 9% in clubhead speed at impact. The implications for hitting the ball further are
clear, since this increase in clubhead speed would correspond to an increase in ball speed
off the tee of 4.9 m/s (=11 mph; Daish, 1972).

Prior to the current study, simulation studies of the golf swing have not incorpo-
rated the force-velocity property of muscle into their model’s torque generators. Our re-
sults have shown that such an omission will adversely affect the measured optimal timing
pattern of segment involvement. Without the constraint imposed by the force-velocity
property of muscle, the shoulder and wrist torque generators will be activated earlier in the
down swing o take advantage of the additional angular impulse that can be produced by
torque output profiles that rise asymptotically to a maximum. The three-segment model
used in our study was able to use realistic magnitudes of muscular torques to generate
clubhead speeds that are reflective of good golfers. The maximum values for the torques
generated by the torso, shoulder, and wrist joints during either SIM-1 and SIM-2 simula-
tion conditions (Figures 3 & 5) were 109 Nm, 96 Nm, and 18.5 Nm, respectively, which
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agree favorably with the upper values of torque (110, 90, and 30 Nm) measured directly
from a of a low handicap amateur golfer using inverse dynamics (Neal et al., 1999). In
comparison, the peak torque values of 339 and 191 Nm reported by Campbell and Reid
{1985) for the torso and arm segment generators in their 3 segment model appear to be
unrealistically high for a golf swing. Similarly, constant torque values of 200 Nm for the
shoulder joint, as used by Lampsa (1975), would appear to be well beyond any golfer’s
physical capabilities. Of course with a two-segment model, such as the one used by Lampsa,
unrealistically high shoulder torques have to be employed in the simulation model if
clubhead speeds at impact are to reach values known to be attainable by good golfers.

One of the obvious disadvantages of two-segment models is that they cannot exam-
ine the importance of the torso in generating clubhead speed. The results produced from
our three-segment model clearly showed that, for optimal performance, it was the active
counter-clockwise rotation of the torso that initiated the downward sequence of the swing.
When an active wrist torque was employed by the model, the magnitude of angular dis-
placement that the torso rotated through to impact, increased. It was this strong rotation of
the torso segment that was observed to be directly linked to the delay in the uncocking of
the wrists that good golfers seek during the downswing.

In conclusion, our simulations have shown that a properly timed wrist torque ap-
plied by the golfer to the club’s handle can produce gains of up to 9% in clubhead speed.
Our simulation results also show that while muscular wrist torque is desirable for maxi-
mizing clubhead speed at impact, it is not a necessary requirement for aligning the clubshaft
to the desired vertical position for impact.
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